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Abstract 

Two mathematical propulsion models have most frequently been used1. In the constant ejection 
velocity (CEV) model, either the thrust or thrust acceleration is bounded. In the power-limited (LP) 
model, power of the jet (the product of the thrust magnitude and the specific impulse) is bounded. 
This paper is concerned to comparison of the LP and CEV models. It is demonstrated that LP 
solution is a quite precise approximation of the CEV one. The possibility to use LP solution to solve 
CEV problem is considered. The corresponding continuation method is presented. 
 

Nomenclature 

CEV  = constant ejection velocity model 
LP  = power limited model 
TPBVP = two point boundary value problem 
x  = vector of the spacecraft’s position 
v  = vector of the spacecraft’s velocity 
a  = vector of the thrust acceleration 
a  = magnitude of the thrust acceleration 
ε  = switching function 
pv  = adjoint vector 
t  = current time 
to  = launch date 
T  = transfer duration 
Tb  = total duration of the burn arcs 
Ω  = force function of the gravity field 
J  = performance index 
V∞  = initial asymptotic geocentric velocity of the spacecraft 
mo  = initial mass of the spacecraft at the beginning of the heliocentric arc 
mk  = final mass of the spacecraft 
∆  = relatively difference between LP and CEV final masses 
z  = vector of the unknown TPBVP parameters (adjoint vector and its derivative) 
f  = vector of the right boundary conditions 
b  = vector of the initial residuals 
ϕi  = continuation functions 
τ  = continuation parameter 
k  = normalizing parameter 
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Introduction 
Two conventional mathematical models of the low-thrust transfer are discussed. The first one 
assumes that thrust magnitude is controlled and power limit is unique constraint (LP model). 
Problem of the mission optimization is separated into two subproblems within this model -- 
dynamical and parametric ones. The second mathematical model assumes that thrust or thrust 
acceleration magnitude is constant. It is CEV model. Problem is not separated in this case of 
optimization, and process of the mission design becomes an iterative one. The first approach (LP 
problem) is essentially more regular than the second one (CEV problem). Unfortunately, possibility 
of the thrust control often very limited in the practical applications. So, the second approach is more 
realistic. 
 
Selection of the main design parameters within the collection of all mission parameters allows  to 
improve design process. This selection based on compressed information that concerns main 
performances of the spacecraft. The main approach is consists in separation of the complex system 
into base and detailed systems. Structure of the mission model becomes hierarchical one within this 
approach. Main design parameters coordinate design process. Detailed optimization of the mission 
is carried out in assumption that these parameters are fixed. All main spacecraft subsystems are 
presented in the simplified form as so-called design relations. The design relations are functions of 
the main design parameters and some statistical coefficients. Spacecraft model in combination with 
dynamical one presents the mission model. Concordance of the main design parameters with 
trajectory and control parameters is the main  problem of the mission design. The main 
mathematical difficulty of the low-thrust mission design consists in the trajectory optimization. 
Optimal control problem should be solved every time when it varies set of the main design 
parameters. 
 
Main advantage of the LP problem consists in the possibility of it separation. If optimal trajectory is 
found, mass optimization does not require recalculation of this trajectory. Several ways exist to use 
this advantage for CEV mission optimization.  
 

Comparison of the LP- and CEV-model. 
Use of LP solution to estimate solution of the CEV problem 

 
The easiest way is to use LP model for estimation main parameters of the CEV mission. It is 
necessary to estimate main design parameters -- payload mass, fuel consumption, thrust magnitude, 
ejection velocity, transfer time, etc. Analysis, which was worked out, shows possibility of this way. 
Authors carried out comparison of the LP planetary missions and the CEV ones. Difference between 
main parameters of these missions mostly remains within a few percents. 
 
For example, let us consider Fortuna rendezvous mission (Fortuna is asteroid, which belongs to 
main asteroid belt). It is assumed that spacecraft delivers into the geocentric hyperbolic orbit by 
means of Russian launcher “Proton” and upper stage “Block D”. The magnitude of the asymptotic 
velocity V∞ of this orbit and launch date to is optimized. Both LP and CEV model are used to 
optimize heliocentric arc of trajectory. It is assumed that thrust magnitude in case of CEV problem 
is 0.9885 N. Some results are presented in the table 1. The last column of the table 1 contents 
relatively difference between final mass of spacecraft in cases of using LP and CEV model. This 
difference remains within a few percents. 
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Table 1 

Fortuna rendezvous missions 
N to T [d] V∞ [m/s] mo [kg] CEV model LP model ∆ 
     Tb [d] mk

CEV [kg] mk
LP [kg]  

1 20.7.2000 900 726 6127 731 4951 5089 2.8 % 
2 25.6.2000 1050 466 6160 665 5090 5262 3.4 % 
3 20.6.2000 1200 519 6155 645 5117 5373 5.0 % 

 
Fig.1 presents heliocentric arc of LP trajectory. Strokes along trajectory denote magnitude and 
direction of the thrust acceleration. The CEV trajectory is not distinguished from the LP one in 
presented scale. 

 
Fig. 1. Fortuna rendezvous mission (LP model, N=1 in the table 1) 

 
Fig.2 presents thrust acceleration with respect to time in cases of LP and CEV model. It is obviously 
that burn arcs of the CEV model corresponds to the local maximums of the LP model. 
 

 
Fig. 2. Comparison of the CEV and LP thrust acceleration profiles (Fortuna rendezvous mission, 

N=1 in the table 1)
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Continuation method to transform LP solution into CEV one 

 

The second way of the LP-model application is continuation of the its solution into the solution of 
the CEV problem. It is assumed that spacecraft moves in the force field Ω. Equation of spacecraft 
motion in the inertial Cartesian coordinates is follows: 

d2x/dt2 = Ωx + εa,      (1) 

where x=(x, y, z)T - vector of the spacecraft position, a - vector of the thrust acceleration, ε - 
switching function (ε = 1 if thrusters are running, otherwise ε = 0) The minimum-fuel transfer 
problem is reduced to the minimization of the performance index1 

J dt
T

= ∫1
2

εa aΤ  
0

     (2) 

in case of LP problem and 

J a dt
T

= ∫ ε  
0

,      (3) 
in case of CEV one. T is transfer duration and a = |a| here. It is assumed that transfer duration is 
fixed. It is assumed that thrust acceleration a = const in case of CEV problem. 

Optimal control problem is reduced to the two point boundary value problem by means of 
Pontryagin’s maximum principle. Optimal control is 

a = pv, ε ≡ 1      (4) 

in case of LP problem and it is 

a = apv/pv, ε = ε(pv -1) = 
1 1  if  and
0  otherwise

pv >



   (5) 

in case of CEV one, where pv = |pv|.. Adjoint vector pv complies with the differential equation 

d2pv/dt2 = Ωxx pv,     (6) 

Boundary and transversality conditions complete formulation of the TPBVP. For example, let us 
consider optimization of the heliocentric arc of the interplanetary mission. Boundary conditions at 
the t=0 are3 

x(0) = xo, dx(0)/dt = vo + V∞ pv/pv,    (6) 

and ones at the t = T are 

x(T) = xk, dx(T)/dt = vk     (7) 

in case of rendezvous mission or 

x(T) = xk, pv(T) = 0      (8) 

in case of flyby mission, where V∞ is initial asymptotic geocentric velocity of the spacecraft. 
 
Let us make use of the basic ideas of continuation method to transform LP problem to the CEV one. 
Equation of the optimal motion may be written follows in the general case: 
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where ϕ1(τ), ϕ2(τ) are continuation functions, so that eq. (9) transforms into the equation of the LP 
optimal motion if τ=0: 
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and it transforms into the equation of the CEV optimal motion if τ=1: 
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It is necessary to solve equation 

f(t, τ , pvo, &p vo)|t=T, τ=1 = 0,    (12) 
with respect to unknown initial value of the adjoint vector pvo and its derivative  &p vo, where function 
f(t, τ, pvo, &p vo) is equal to 

f
x x

x v
=

−
−











( )
d ( ) d

k

k

T
T t

     (13) 

 
in case of rendezvous mission or 

f
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pv
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kT
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     (14) 

 
in case of flyby one. Let us assume, that f(T, 0, pvo(0), &p vo(0)) = b, where vectors pvo(τ), &p vo(τ) are 
considered as function of the continuation parameter τ. The main equation of the continuation 
method has follows form in this case: 

d
d

z
f z b

f
z zz

1

τ
∂
∂τ

= − +






 =− ( ) , ( )  00 ,    (15) 

 
where z(τ) = ( )p pv vo o

T
, & . 

It is possible to use difference derivatives to calculate matrix fz and vector fτ in the (15). But 
accuracy of difference derivatives does not satisfactory one frequently. So, it is preferred to 
calculate fz and fτ by means of associated integration of the (9) and variations of the state vector and 
adjoint variables. The complete system of the differential equations is follows: 
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where E is identity matrix. The third equation in the (16) must include terms with partial derivative 
of the ε with respect to pvo, and the fifth one must include partial derivative of the ε with respect to 
τ. These derivatives has multiplier δ(pv-1) (delta-function δ(pv-1) = ∞ if  pv = 1 and it is equal to 0 
otherwise). We will take into account these terms if we would interrupt integration of the (16) when 
pv = 1 to change magnitude of the d(∂x/∂pvo)/dt, d(∂x /∂τ)/dt in every of these inner points. Indeed, 
these equation can be written in the form 
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where e is τ or one of the components of the vector pvo, f1 and f2 are continuous functions and s = 
sign( &pv) pv

T(dpv/de) (the second term with δ-multiplier is absence in the (16); f2 is follows: 
f2=aϕ2(τ)pv/pv). Let us suppose that pv(t1) = 1. From equation (17) follows 
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The limit of the first integral is equal to 0. It is necessary to change of variable t by pv to calculate 

the second integral: dt = (1/st)dpv, where s
pt

v

T=
1

p pv v& . Resultant expression is 

∂
∂

∂
∂

v v
f

e e
s

s pt t t t t v= =+ −

= + 2 .    (19) 

Equation (19) should be used in the all inner points where pv = 1. 
 
Initial conditions (6) should be expanded by follows expressions: 
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  (20) 

 
Let us assume that solution of the LP-problem (10) is known: pv(0) = pvo

LP(one efficient numerical 
method to solve LP problem see in another our paper2). Let us suppose pvo(0)=pvo

LP Vector b is 
equal to 0 in this case. Equation (9) remains invariant with respect to constant parameter k, if we 
norm adjoint vector  

pv = pv
LP/(k pvo

LP),     (21) 
and if it is assumed 

ϕ1(τ) = k pvo
LP ⋅(1 - τ), ϕ2(τ) = τ.    (22) 

Equations (21) and (22) have following meaning. Norm of the pvo
LP is arbitrary. It is essentially less 

than 1 in case of the low thrust problem. This fact means that ε ≡ 0 in the beginning of the 
continuation process if pv(0) = pvo

LP. The continuation process in this initial interval of τ 
degenerates into increase of the pv. This interval is finished at the τ1: p t p tv max v( ) max ( ; )τ τ1 1=  = 1. 

The result of the continuation process in this interval is equivalent to the normalization  
pv = pv

LP/pv max(τ1).     (23) 
It is necessary to find τ1 and pv max(τ1) to normalize pv in according with (14). It is difficult enough 
problem and it is not necessary from the point of view construction of the numerical continuation 
process. Moreover, easier normalization (21) has some advantage in comparison with (23). Use 

either (23) or (21) allows to eliminate initial 
unproductive interval of continuation, but 
normalization (21) allows also to choose number 
of the burn arcs at the τ = 0. This possibility is 
demonstrated in the Fig.3. Here it is shown 
curve of dependency of the pv with respect to 
time in case of LP problem. There are two burn 
arcs (from t3 to t4 and from t5 to T) at the 
beginning of the continuation process if we 
choose k=ko=1. The coast arc precedes these 
burn arcs. It is unique burn arc if k=k1 (from t6 to 
t7). Two burn arcs (from 0 to t1 and from t2 to T) 
exist if we choose k2<1. The initial coast arc is 

absent in this case. 
 

Numerical examples 
 
There are presented three examples of the numerical solutions of the LP problem and their 
continuation into the CEV solutions. The first example is transfer between two elliptical orbits, the 
second one is transfer from low Earth orbit to geosynchronous orbit, and the third one is 45-degree 
phase change of the orbital motion. 

 

 
Fig.3. Use of parameter k to choose number of 

the burn arcs. 
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Table 2 
The examples of the numerical solutions 

Parameter Problem 1 Problem 2 Problem 3 
 Orbit po=1, eo=0.1, ωo=π po=1, eo=0 po=1, eo=0 

Start r (1.1037, -0.1212, 0) (1,0,0) (1,0,0) 
 v (0.1092, 0.8940, 0) (0,1,0) (0,1,0) 
 Orbit pf=1, ef=0.4, ωf=0 pf=6.238, ef=0 pf=1, ef=0 

Finish r (0.4963, 0.6295, 0) (-3.4882, -5.1715, 0) (0.8763, 0.4818, 0) 
 v (-0.7853, 1.0191, 0) (0.3316, -0.2237, 0) (-0.4818, 0.8763, 0) 

T 7.5 13.7 6.0 
LP model 

pvo (0.003950, 0.054272, 0) (-0.050218, 0.069321, 0) (-0.021830, -0.056861, 0) 

dpvo/dt (-0.024306, 0.005009, 0) (-0.048960, 0.042200, 0) (0.055215, 0.017111, 0) 

CEV model 
a 0.05 0.10 0.05 

pvo (0.093948, 1.820225, 0) (-2.104856, 9.328105, 0) (-0.829581, -2.217508, 0) 
dpvo/dt (-0.807759,  0.194261, 0)  (-7.727214, 2.106728, 0) (2.165689, 0.641663, 0) 

 1 1.659687 6.085439 1.058080 
Time of 2 2.604417 7.646246 4.941918 

switching 3 5.121851 - - 
 4 5.812537 - - 

k 0.5 1.0 0.9 
 
Let us consider the first example more 
detailed. Trajectory of motion is 
presented in the Fig.4. This trajectory 
includes three burn arcs. Fig.5 
presents magnitude of the optimal 
thrust acceleration in cases of LP and 
CEV models. Dashed line corresponds 
to k=0.5. This magnitude of k provides 
existence of the three burn arcs at the 
beginning of the continuation process. 
Fig.6 shows angle between thrust and 
x-axis both in case of LP model and 
CEV one. The difference between 
these angles is quite small. This 
example demonstrates that LP solution 
is a good approximation of the CEV 
one. 
 

 
Fig.4. Optimal CEV trajectory (first example in the table 
2) 
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Fig.5. Thrust acceleration (first example in the table 2) 

 
 

 
Fig.6. Angle between thrust and x-axis (first example in the table 2) 
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