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ABSTRACT : It is considered optimization of low-thrust trajectories 
between non-coplanar elliptical orbits. The optimal control problem is 
reduced to the two-point boundary value problem (TPBVP) by means of 
maximum principle. The numerical homotopic technique and modified 
newton technique are used to solve TPBVP. Differential equations of 
optimal motion are numerically averaged when TPBVP is solved. It was 
developed the robust and efficient software and a large number of optimal 
trajectories were calculated. New qualitative results were obtained. In 
particularity, there were found bifurcation of optimal solutions and 
existence of the critical initial inclination. The partial classification of 
optimal control structure was carried out. 

1 -  PROBLEM DEFINITION 

It is considered optimization of low-thrust transfer between non-coplanar elliptical orbits in the 
inverse square low field. Significance of this problem is connected with planned using of electric 
propulsion for advanced spacecraft insertion. The advanced missions includes low-thrust insertion 
into GEO [1-3, 5-11], satellite systems forming and maintenance, spiral untwisting around the Earth 
for spacecraft insertion into an escape trajectory [4, 10, 11-14]. 

Optimization problem of low-thrust transfer between non-coplanar elliptical orbits reduces to the 
two-point boundary value problem (TPBVP) by means of Pontryagin’s maximum principle. 
Difficulty of solving the TPBVP is connected, in particular, with problem of initial guess value, 
which is caused by complex topology of optimal solution in the parametric space. Optimal solutions 
bifurcations lead to the discontinuity of TBVP residual vector’s derivative with respect to initial 
value of TBVP parameters during crossing bounds of regions having different solutions (i.e. 
hypersurfaces having singular sensitivity matrix). This leads to the failure or instability of numerical 
methods. 

Characteristic features of electric propulsion transfers are defined mainly by a low thrust-to-gravity 
force ratio. Thrust acceleration smallness leads to the long-duration transfers. The typical low-thrust 
transfer to GEO includes hundreds orbits. In this case, the differential equations of optimal motion 
becomes very sensitive with respect to variations of initial values of co-state variables. This 
sensitivity makes still more difficult the TPBVP solving. In this circumstances, insufficient number 
of digits in the machine representation of real number becomes one of the practical barrier for the 
numerical solving the optimal control problem.  Another problem is essential increase of 



 

requirements to the computational productivity when it increases the number of trajectory 
revolutions. 

The averaging technique [1-3, 8, 9, 11] is used to decrease differential equations instability and 
computational consumption. If optimal control structure is pre-fixed, then maximum principle is 
applied to the averaged equations for optimization of slow control parameters. However, the best 
results are obtained by another approach, when optimality conditions are derived from the 
non-averaged equations and then these optimal equations are averaged. Equation of motion are 
presented in the Keplerian elements. The numerical averaging over the orbit is used and a version of 
modified newton or shooting method is used to solve corresponding TPBVP. 

We will consider optimal transfers between non-coplanar elliptic orbits for a minimum or fixed 
time. The numerical algorithm based on continuation technique [11-13] is described. There are 
analyzed features of optimal trajectories, in particularity, transfer trajectories from the inclined 
circular or elliptical orbits to GEO. 

2 - EQUATIONS OF MOTION 

Let us consider spacecraft motion under the influence of the primary gravity force and electric 
propulsion thrust. Magnitudes of the thrust and specific impulse of running electric propulsion 
engine are assumed to be constant. There are not applied any constraints to the thrust attitude. 
Gravity force is assumed to be obeyed to the inverse square law. 

Thrust acceleration projections into orbital orts are following: 

ψϑδτ coscos
m
P

a = , ψϑδ cossin
m
P

a r = , ψδ sin
m
P

an = ,   (1) 

where aτ, ar, an – transversal, radial, and binormal projection of thrust acceleration correspondingly, 
δ - thrust step function (δ=1 if engine is running, and  δ=0 if engine is switched off), P – thrust 
magnitude, m – spacecraft mass, ϑ - «pitch» angle (angle between projection of thrust vector onto 
the orbital plane and transversal), ψ - «yaw» angle (angle between thrust vector and orbital plane). 

To avoid singularity in the vicinity of zero eccentricity and inclination, there are used equations of 
motion in the equinoctial elements [1]: 
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where
µ
p

h = , ( )ω+Ω= coseex , ( )ω+Ω= sineey , Ω= cos
2

tan
i

ix , Ω= sin
2

tan
i

iy , and 

Ω++= ωνF  - equinoctial elements, p – semi- latus rectum, e – eccentricity, ω - argument of 
pericentre, i – inclination, Ω - right ascension of ascending node, ν - true anomaly, 

FeFe yx sincos1 ++=ξ , FiFi yx cossin −=η , 221~
yx ii ++=ϕ , w – exhaust velocity of electric 

propulsion. 

It is necessary to transfer spacecraft having initial mass m0 from the initial orbit 

h=h0, ex=ex0, ey=ey0, ix=ix0, iy=iy0     (3) 

into the final one 

h=hk, ex=exk, ey=eyk, ix=ixk, iy=iyk     (4) 

for a time T. 

It is considered the minimization of performance index 

∫ →=
T

dt
w
P

J
0

minδ ,       (5) 

which corresponds to the minimum-propellant problem.  If there are not a constraints on transfer 
duration T and if δ ≡ 1, performance index (5) corresponds to the minimum-time problem. 
However, the more conventional performance index for a minimum-time problem is 

min
0

→= ∫
T

dtJ .       (5a) 

Within a problem of transfer between orbits for a minimum time, the difference between 
performance indices (5) è (5a) is reduced to the different normalization of adjoint vector by means 
of transversality conditions. 

3 - OPTIMAL CONTROL 

The maximum principle is used to solve the problem (2-5). The Hamiltonian of optimal control 
problem (2-5) is 
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( )[ ] ( )[ ] eyyexxh peFpeFhpA ++++++= sin1cos1 ξξτ , 

( )eyexr pFpFA ⋅−⋅= cossinξ , 
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ph, pex, pey, pix, piy, pF, pm –adjoint variables, coupled with the phase coordinates h, ex, ey, ix, iy, F, 
and m correspondingly. 

Optimal controls δ(t), ϑ(t), ψ(t) are defined from the Hamiltonian (6) maximization: 
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ψ  - switching function. Within the minimum-time 

problem, the identity 

δ≡1,       (10) 

is used instead of (9), and differential equations for m and pm can be eliminated using explicit 
expression for the spacecraft mass: 

( ) twPmm ⋅−= 0 .     (11) 

Substitution of (7), (8), and (9) or (10) into (6) leads to the expression for the optimal Hamiltonian: 
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The equations of optimal motions become following: 
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where  ( ) ( )TT ,,,,,,,,, iyixeyexhyxyx pppppiieeh == px . 

Since the transfer between orbits is considered, the final true longitude F is not fixed, therefore 
pF(T)=0. The optimal Hamiltonian does not depend on F after averaging, therefore 

0=
∂
∂−=

F
H

dt
dpF . So, 0≡Fp  on the averaged solution. The optimal Hamiltonian, taking into 

account supposed averaging, becomes following: 
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and the equations of motion (13) can be rewritten in the form: 
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In case of minimum-time problem δ≡1, t
w
P

mm −= 0 , so equations for m è pm can be eliminated: 
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4 - AVERAGING 

Low thrust-to-gravity acceleration ratio allows to use averaging of optimal differential equations. 
The averaging allows to increase the integration step size and, therefore, to decrease computational 
consumptions. But main reason of averaging usage is its regularizing role : the averaged differential 
equations are more stable numerically in comparison with non-averaged ones. 

The averaging on time over the spacecraft orbital period is used. It is equivalent to well-known in 
celestial mechanics averaging on mean anomaly. The asymptotic basis  of the averaging is well-
known too: solut ion of averaged differential equations is zero-order term of the Fourier series 
expansion of non-averaged solution. The intuitive basis of the averaging is confined in the 
smallness variation of the slow orbital elements during one revolution due to low thrust. 

Differential equations are averaged using following expression: 
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where y=(xT , pT)T  for minimum-time problem, y=(xT , m, pT , pm)T  for minimum-propellant problem, 
f(y,F,t) – the right parts of non-averaged differential equations (15) or (15a), 
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 - mean motion, 23 ξhdFdt = . 

5 - BOUNDARY VALUE PROBLEM AND TRANSVERSALITY CONDITIONS 

State vector x, co-state vector p, and residual vector f at the final time T are computed as result of 
integration of equations (15) or (15a) using averaging (16). Residual vector is following: 
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for the fixed time (minimum-propellant) problem and 
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for the minimum-time problem. 

It is necessary to solve equations (17), (17a) with respect to vector of unknown TPBVP parameters 
z. Vector z has form: 
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for minimum-propellant problem 
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for minimum-time problem. 

Let us consider different kinds of boundary conditions. 

5.1 - FINAL SPACECRAFT MASS IS GIVEN IN THE MINIMUM-PROPELLANT PROBLEM. 

It is necessary to find initial mass of spacecraft m0, which becomes 7th parameter of the TPBVP 
instead of pm in the equation (18). The transversality condition pm(0)=0 should be satisfied at the 
initial time, and the condition m(T)-mk=0 instead of pm(T)=0 should be included in the equation 
(17). 

5.2 - FREE PERICENTRE RADIUS . 

There are given apocenter radius rαk, argument of pericentre ωk, inclination ik, and right ascension 
of ascending node Ωk for the final orbit. In the equinoctial elements these conditions have form: 
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Transversality conditions are expressed from the equations : 
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after exclusion from this system the undetermined multipliers νi. As it follows from (20), the final 
magnitudes of pix and piy are an constraint-free, so it is sufficient to consider the 3 first equations of 
system (20). Let us exclude ν2 from the 2nd and 3rd equations. Then let us substitute the expression 
for ν1, which is getting from the 1st equation, into the derived equation. Finally, we will get 
following transversality condition: 
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where 22
yx eee +=  - eccentricity. Equation (21), equations (19), and  corresponding condition for 

pm(T) or mk(T) are enclose the system of boundary conditions at the final time. 

5.3 - FREE APOCENTER RADIUS . 

Case of free apocenter radius is similar to case of free pericentre radius, but the 1st equation in the 
(19) should be replaced by 

( ) 01)( 222
1 =++−= yxk eerhTg πµ ,     (22) 

where rπk – given final pericentre radius. The corresponding transversality condition becomes 
following: 
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5.4 - FREE LINES OF APSIDES AND NODES . 

If lines of apsides and nodes of final orbit are free, then following conditions should be satisfied at 
the final time: 
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Additional transversality condition are following: 
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5.5 - FREE LINE OF NODES. 

Free final line of nodes corresponds to the following conditions at the final time: 
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In addition, the transversality conditions should be satisfied 
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5.6 - FREE LINE OF APSIDES . 

If initial argument of pericentre is free, then final boundary conditions are following: 
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and transversality condition is following: 

.0=− xeyyex epep       (29) 

5.7 - IT IS FIXED ONLY APOCENTER OR PERICENTRE RADIUS . 

In this case boundary condition at the final time is following: 

( ) 01)( 222 =+−= yxk eerhTg mµ ,    (30) 

where rk – the fixed apocenter radius or pericentre radius of final orbit, sign «-» corresponds to 
fixed apocenter radius, and sign «+» corresponds to the fixed pericentre radius. Expression (30) 
leads to the following transversality conditions: 
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5.8 - FREE PERICENTRE OR APOCENTER RADIUS AND FREE LINE OF APSIDES . 

The boundary conditions at the final time are following: 
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where rk and signs are the same as in the previous considered case. In addition to (32), the following 
transversality condition should be satisfied at the final time: 

0=− xeyyex epep .      (33) 

5.9 - FIXED SEMI-LATUS RECTUM. 

In this case boundary condition at the final time is following: 

g(T) = µh2 – pk,      (34) 

where pk – fixed final semi- latus rectum. Expression (34) should be completed by trivial 
transversality conditions : 
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5.10 - FIXED SEMIMAJOR AXIS . 

In this case boundary condition at the final time is following: 
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where ak – fixed final semimajor axis. Expression (36) should be completed by following 
transversality conditions at t = T: 
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6 - TECHNIQUES OF THE BOUNDARY VALUE PROBLEM SOLVING 

The boundary value problem solving is reduced to the solving of nonlinear system, which is 
consisted of a state residuals and a transversality conditions. The continuations technique or 
versions of modified newton methods were used to solve this system. The continuation method 
belongs to the class of homotopic methods. One of the most simple version of continuation method 
was used in this study. The original problem is immersed into some one-parametric family and then 
it is used the linear continuation of the problem solution with respect to the family parameter. 



 

The essence of considered continuation technique is following. Let it is necessary to solve the 
nonlinear system 

f(z)=0.       (34) 

Let f(z0)=b at some initial approximation z0. Let us consider following one-parametric nonlinear 
system 

f1(z,τ)=f(z)-(1-τ)b=0.      (35) 

When τ=0, z=z0  

f1(z0,τ)=0,      (36) 

and when τ=1 f1(z,τ)=f(z). Let us represent the solution of problem (35) as function of continuation 
parameter τ: z=z(τ). By virtue of (35), (36), z(τ) can be represented as solution of the following 
system of ordinary differential equations: 
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having following initial condition: 

z(0)=z0.      (38) 

After integrating the system (37), (38) on τ from 0 to 1, we get solution of the original problem 
(34). Thus, the solving of nonlinear system (34) is reduced formally to the initial value problem 
(37), (38). The system (37) we will name the differential equations system of continuation method. 

If Euler method is used for problem (37), (38) integration, then the continuation method converts to 
the classical newton method. The advantage of continuation method in comparison with newton 
method appears if more advanced numerical integrators are used. If an ideal integration method is 
used, then the convergence domain of the continuation method in the parametric space z is 
coincided with the attraction area of given solution in this space. Equations  (37) have singularity on 
the hypersurface where matrix ∂f/∂z is singular, therefore continuation method (as newton methods) 
is failed during crossing these hypersurfaces. Singularity of ∂f/∂z generally take place on the 
bounds of the attraction region of solution. The singularity is connected with a solution bifurcation 
of the original system (34). 

Right parts of equations (15) or (15a) are numerically averaged using expression (16) during 
integration corresponding system. The simple numerical techniques were used to get the integrals of 
functions. There are method of trapezoids or Simpson’s method on the fixed uniform grid on F  
consisting of 30-300 nodes. The explicit Runge-Kutta method of 7th (8th) order was used to integrate 
the averaging system (15). The initial conditions of basic problem were following: 
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at the t = 0. For minimum-time problem the spacecraft mass is parameter, so conditions for mass 
and for adjoint to mass variables should be excluded from (39). 

The continuation technique demonstrated its highly effectiveness for solving minimum-time 
problems. In most problems, the convergence to the optimal solution was achieved by choice the 
following initial approximation for TPBVP parameters vector: 

ph = 1, pex = pey = pix = piy = 0, T = 1, 



 

where T – dimensionless time referred to the initial orbit. When parameters of the initial or final 
orbit were varied, the TPBVP parameters vector of previous problem was used as initial 
approximation. 

Unfortunately, the continuation technique was found insufficiently efficient for the minimum-
propellant problem. The modified newton method was used in this case, and TPBVP parameters 
vector of corresponding minimum-time problem was used as initial approximation. 

7 - NUMERICAL RESULTS. 

7.1 - TRANSFER BETWEEN CIRCULAR NON-COPLANAR ORBITS. 

At first, let us consider the most simple problem – the minimum-time transfer between circular non-
coplanar orbits. Within all model problems we will use the same spacecraft parameters: 

- initial mass of spacecraft is 1320 kg; 

- electric propulsion thrust is 0.332 N; 

- electric propulsion specific impulse is 1500 s. 

Trajectory perturbations due to Earth oblateness, Moon, Sun, and planets gravity forces, impact of 
eclipses and solar array degradation are not took into account. 

The series computations of optimal transfers from the 
circular orbits, having different altitude and inclination, 
into the GEO was carried out using developed 
techniques and software. Analysis of obtained 
numerical data leads to the interesting new result: the 
bifurcation of an optimal solution and the critical initial 
inclination are exist. If inclination is less critical one  
(icr ≈ 47.3°) then exists unique solution of the 
minimum-time problem. The thrust vector is always 
orthogonal to the spacecraft radius-vector on this 
solution, and eccentricity is identically equals to zero. 
Thrust steering is restricted by controlling of angle ψ 
between thrust vector and orbital plane in this case. An 
example of dependency of angle  ψ with respect to time 
and argument of latitude is presented in the Fig. 1. 

Maximal absolute magnitude of angle ψ on the orbit  
ψmax is reached in the nodal points. Angle ψmax 
increases when time increases and it reaches maximal 
magnitude 90° when the semimajor axis reaches its 
maximal magnitude. Then ψmax decreases. 

The typical situation on these solution is acceleration 
during initial transfer phase (phase of increasing ψmax) 
and braking during final transfer phase (phase of 
decreasing ψmax). The typical dependency of angle ϑ 
(angle between projection of the thrust vector onto the 
orbital plane and transversal) is presented in the Fig. 2. 

If initial inclination is sufficiently small then transfer can consist of unique acceleration or braking 
phase. 
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 Let us denote the considered solution, which is 
characterized by zero eccentricity and equality ϑ = 0° or 
ϑ = 180° for averaged problem, as C-solution. 
Projections of typical C-trajectory are presented in the 
Fig. 3. 

It was found another optimal solution (E-solution) when 
initial inclination is greater than critical one. The thrust 
vector position is not constrained by a local horizon 
plane on the averaged E-solution, therefore the 
eccentricity is nonzero on the trajectory. The projections 
of typical E-trajectory are presented in the Fig. 4. The 
dependencies of angles ϑ and ψ versus time and 
argument of latitudes u on this trajectory are presented in 
the Fig. 5. 

Typical phases of E-trajectory are following: 

1. The acceleration-braking phase (acceleration 
in the pericentre vicinity and braking in the 
apocenter vicinity); 

2. The pure acceleration phase; 
3. The braking-acceleration phase (braking in 

the pericentre vicinity and acceleration in the 
apocenter vicinity).  

Fig. 6 presents dependency of the maximal eccentricity, 
which is reached during the transfer, with respect to 
initial inclination. The initial altitude is 15000 km. E- and 

C-solutions are merged at the critical initial inclination 47.3°, and maximal eccentricity on the 
E-trajectory increases when initial inclination increases. 

Fig. 3. Projections of minimum-time 
trajectory from circular orbit h =15000 km, 

i = 75° into the GEO (C-solution)

Fig. 4. Projections of minimum-time 
trajectory from circular orbit h =15000 km,

i = 75° into the GEO (E-solution)

Fig. 5. Dependency of angles ϑ and ψ vs. time and argument of latitude for minimum-time transfer from 
circular orbit h = 15000 km, i = 75° into the GEO (E-solution)



 

The dependency of the ratio of maximal geocentric distance to the initial radius versus initial 
inclination is presented in the Fig. 7. In case of large initial inclination, the decreasing of pericentre 
radius on the initial phase of E-trajectory can take place. 

The required increment of characteristic 
velocity on the E-trajectory is less than one 
on the C-trajectory. For minimum-time 
problem it corresponds to smaller transfer 
duration. Dependency of transfer duration 
versus initial inclination for C- and E-
trajectories is presented in the Fig. 8. 

Thus, if initial inclination is less than critical 
one, then C-trajectory is globally optimal, 
otherwise E-trajectory is globally optimal. 
Fig. 9 presents dependency of required 
characteristic  velocity consumption with 
respect to initial inclination and initial 
altitude for globally optimal solution. 

Advantage of globally optimal control in comparison with rely optimal control is presented in the 
Fig. 10. The improvement does not exceed 4% if initial inclination is less than critical, and it can be 
greater than 15% otherwise. 

Usage of minimum-propellant control allows essentially to increase final mass of spacecraft at the 
expense of increased transfer duration. Fig. 11 presents dependency of characteristic velocity, 
which is required for transfer from initial circular orbit having inclination 90° into GEO, versus 
transfer duration. The dashed line corresponds to the minimum-time problem for varied initial 

Fig. 6. Maximal eccentricity vs. initial inclination 
on the E-solution

Fig. 7. Maximal relative geocentric distance vs. 
initial inclination on the E-solution

Fig. 8. Transfer duration vs. altitude and inclination 
of initial orbit (minimum-time problem) 
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altitudes. Thick line corresponds to the minimum-propellant problem for initial altitude 30000 km, 
and thin line corresponds to the minimum-propellant problem for initial altitude 15000 km. 

Maximal geocentric distance during transfer could be essentially greater than GEO radius in case of 
large initial inclination. The maximal geocentric radius monotonically decreases on the 

C-trajectories when the transfer duration increases. On the contrary, in case of E-trajectory, the 
maximal geocentric radius has a minimum at the transfer duration close to minimal one (Fig. 12). 

7.2 - 3D TRANSFER FROM AN ELLIPTICAL ORBIT INTO GEO. 

C- and E-transfers between circular non-coplanar orbits generates corresponding solutions for 
transfer between non-coplanar elliptical and circular orbits. In this case, of coarse, the eccentricity 
and angle ϑ are nonzero on the averaged C-solution. Qualitative difference of C-solution from E-
solution consists in the eccentricity behavior. The maximal eccentricity at the C-trajectory never 
exceeds initial eccentricity, and, as contrary, the maximal eccentricity on the E-trajectory typically 
greater then initial eccentricity. If initial inclination is large enough, the apocenter and pericentre 
can trade its places on the C-trajectory (i.e. argument of pericentre can change from 0° to 180° or 
vice versa). An examples of C- and E-trajectories are presented in the Fig. 13. 
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Fig. 14 presents evolution of main orbital parameters on the minimum-time trajectory (initial 
pericentre altitude 30000 km, initial apocentre altitude 60000 km, initial inclination 90°). 

The minimum-time problem was studied the most detailed. In particularity, there was carried out 
the series of computation of optimal trajectories for initial orbits having parameters given in the 
3D-grid of pericentre altitudes, apocenter altitudes, and inclinations. Fig. 15 presents some results 
of these computations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At first, it was found that initial inclination for transfer from the elliptical orbit into the GEO 
remains invariable - about 47.3°. As before, the E-solution is preferable inside its region of 
existence. Therefore, the presented results correspond to C-solution if initial inclination is less than 
critical one, and it corresponds to E-solution otherwise. Fig. 15 presents curves corresponding to 
optimal transfers from the initial orbit having fixed inclination, fixed apocenter altitude, and varied 
pericentre altitude. If initial inclination is less than critical one and initial apocenter altitude less 
than GEO altitude, then transfer durations decreases when pericentre altitude increases. If initial 
inclination is less than critical one but initial apocenter altitude is greater than GEO altitude, then an 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 3 0 6 0 9 0 120 150 180 210

t ,  days

E
cc

en
tr

ic
ity

0

50000

100000

150000

200000

250000

300000

0 3 0 6 0 9 0 120 150 180 210
t ,  days

D
is

ta
nc

e,
 k

m

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

0 3 0 6 0 9 0 120 150 180 210
t ,  days

In
cl

in
at

io
n 

°

Perigee 
radius 

Apogee 
radius 

C-solution E-solution 
Fig. 14. Orbital evolution during the minimum-time transfer from the initial orbit  

i=90°, hπ=30000 km, hα=60000 km into the GEO 

I n i t i a l  inc l ina t ion  0 °

0

2 0

4 0

6 0

8 0

100

120

140

160

180

200

0 50000 100000 150000

Perigee altitude, km

T
ra

ns
fe

r 
du

ra
tio

n,
 d

ay
s

ha=200 ha=1000 ha=5000

ha=10000 ha=20000 ha=30000

ha=35800 ha=45000 ha=60000

ha=80000 ha=100000 ha=120000

ha=140000 ha=160000 ha=180000

I n i t i a l  i n c l i n a t i o n  1 5 °

5 0

7 0

9 0

110

130

150

170

190

0 50000 100000 150000

Perigee altitude, km

T
ra

ns
fe

r 
du

ra
tio

n,
 d

ay
s

ha=200 ha=1000 ha=5000

ha=10000 ha=20000 ha=30000

ha=35800 ha=45000 ha=60000

ha=80000 ha=100000 ha=120000

ha=140000 ha=160000 ha=180000

I n i t i a l  i n c l i n a t i o n  3 0 °

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

2 2 0

0 50000 100000 150000

Perigee altitude, km

T
ra

ns
fe

r 
du

ra
tio

n,
 d

ay
s

ha=200 ha=1000 ha=5000

ha=10000 ha=20000 ha=30000

ha=35800 ha=45000 ha=60000

ha=80000 ha=100000 ha=120000

ha=140000 ha=160000 ha=180000

I n i t i a l  i n c l i n a t i o n  6 0 °

100

120

140

160

180

200

220

240

260

280

300

0 50000 100000 150000

Perigee altitude, km

T
ra

ns
fe

r 
du

ra
tio

n,
 d

ay
s

ha=200 ha=1000 ha=5000

ha=10000 ha=20000 ha=30000

ha=35800 ha=45000 ha=60000

ha=80000 ha=100000 ha=120000

ha=140000 ha=160000 ha=180000

Fig. 15. Transfer duration vs. perigee altitude, apogee altitude and inclination of initial orbit  



 

initial pericentre altitude exists, which corresponds to the minimal transfer duration (and minimal 
required increment of characteristic velocity). Let us call initial orbit, having such pericentre 
altitude, as the π-optimal orbit. The dashed line in the Fig. 15 corresponds to transfer from the π-
optimal orbit having zero inclination into the GEO. When initial inclination increases, the optimal 
initial pericentre altitude decreases. When initial inclination becomes greater than critical one, it 
take place the qualitative reconstruction of dependency of transfer duration versus parameters of 
initial orbit. In this case, when initial apocenter altitude less than ~15000 km and initial pericentre 
altitude increases, the transfer duration decreases. If initial apocenter altitude greater than ~15000 
km and initial pericentre altitude increases, the transfer duration monotonically increases. 

Fig. 16 presents contour plot of the 
required characteristic velocity for the 
minimum-time transfer from the high-
elliptical initial orbit, having fixed 
pericentre altitude, into the GEO. The 
“optimal” initial apocenter altitude exists 
for each initial inclination (dashed line in 
the Fig. 16). Initial orbit, having the 
“optimal” apocenter altitude requires 
minimal characteris tic velocity for given 
initial inclination. Let call such kind of 
“optimal” orbit as α-optimal orbit. If 
initial inclination equals to 0° then 
optimal initial apocenter altitude equals to 
~70000 km, if initial inclination is 75° 
then optimal initial apocenter altitude is 
~160000 km.  

Line of optimal initial apocenter altitude 
divides parametric plane (initial apocenter altitude – initial inclination) into the regions having 
different structure of optimal control and different type of orbital evolution. There were found 3 
kinds of the optimal transfers. 

If initial apocenter altitude is low enough (the region 
on the left of dashed line in the Fig. 16) then 
minimum-time thrust steering includes up to 3 
phases (the optimal transfer of the 1st kind). The first 
phase (it can be excluded when initial apocenter 
altitude is large enough) corresponds to the 
acceleration during complete orbit except for 
apocenter vicinity (Fig. 17). At the apocenter 
vicinity it take place the braking trajectory arc, 
which partially compensates the pericentre altitude 
increasing due to acceleration at the rest part of 
orbit. Extremal absolute magnitudes of angle ψ take 
place at the apocenter and pericentre crossing. The 
maximal apogean angle ψ is increases from the 
initial magnitude up to 90° during the first phase. 
The minimal angle ψ (at the pericentre) remains 
roughly invariable and its absolute magnitude is 
essentially less than apogean one. Eccentricity 
increases monotonically and it reaches its maximum 
at the end of first phase. The  second phase 
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Fig. 16. Characteristic velocity, m/s, required for transfer from 
inclined elliptical orbits to GEO, versus apogee altitude and 
inclination of initial orbit. Initial perigee altitude is 250 km, 

specific impulse 1500 s, final thrust acceleration 
0.34227 mm/s2. 

Fig. 17. Thrust steering on the optimal transfer 
of the 1st kind. 



 

corresponds to the acceleration during complete orbit. Maximal angle ψ (at the apocenter) decreases 
monotonically, and absolute magnitude of the minimal angle ψ (at the pericentre) increases and 
reaches 90° at the end of this phase. The third phase corresponds to the acceleration at the apocenter 
vicinity and to the braking at the pericentre vicinity. As result, apocenter altitude decreases and 
pericentre altitude increases. Absolute magnitudes of extremal angles ψ (at the apocenter and 
pericentre) decrease, the absolute magnitude of apogean angle ψ becomes greater than one at the 
pericentre as early as at the beginning of 3rd phase. The maximal eccentricity take place at the 
bound of 1st and 2nd phases during the optimal transfer of the 1st kind. The maximal apocenter 
altitude take place at the bound of 2nd and 3rd phases. The semimajor axis has maximum during the 
transfer too. Averaged inclination monotonically decreases for all kinds of optimal transfers, of 
course. 

The 1st phase duration decreases when initial inclination decreases. This phase vanishes at the some 
initial inclination. Then it decreases the duration of the 2nd phase. The 2nd phase vanishes when 
initial orbit becomes the α-optimal orbit. 

Optimal transfer of the 2nd kind take place when initial orbit is α-optimal orbit (dashed line in the 
Fig. 16). Corresponding trajectory consists of unique phase having stable structure of thrust 
steering. It take place braking at the pericentre vicinity to decrease apocenter altitude and the 
acceleration take place at the apocenter vicinity to increase pericentre altitude. The peak magnitudes 
of angle ψ take place at the apocenter and pericentre. Apogean angle ψ decreases monotonically 
from 90°. Absolute magnitude of angle ψ at the pericentre decreases monotonically too. Averaged 
inclination, semimajor axis, apocenter radius, and pericentre radius vary monotonically. 

The optimal transfer of 3rd kind take place when initial apogee altitude greater than optimal one (the 
region on the right of dashed line in the Fig. 16). Optimal trajectory consists of 2 phases. The 
braking take place during complete orbit at the 1st phase. The thrust steering at the 2nd phase is 
analogously to the thrust steering at the optimal transfer of 2nd kind. Maximal absolute peak 
magnitudes of angle ψ take place at the bound of phases, the maximal apogean angle ψ reaches 90°. 
Averaged pericentre radius has minimum and averaged eccentricity has maximum at the bound of 
phases. Apocenter radius, semimajor axis, and inclination are decreases monotonically. 

7.3 - SMART-1 TRAJECTORY OPTIMIZATION – COMPARISON WITH ESOC RESULTS 

The trajectory optimization of SMART-1 spacecraft is considered. The initial orbit has following 
parameters: perigee radius 20000 km, apogee radius 58068 km, inclination 6.655°, right ascension 
of ascending node 244.21°, and argument of perigee 200.23°. The parameters of the final orbit are 
following: apogee radius 219400 km, inclination 5.49°, right ascension of ascending node 0.25°, 
argument of perigee 79.66°. The final perigee radius is free. Initial spacecraft mass equals to 
325.966 kg, transfer duration is fixed and equals to 284 days [4]. The electric propulsion provides 
thrust 45.82 mN and exhaust velocity 14674 m/s. 

The results of carried out in the [4] optimization are following: final spacecraft mass equals to 
303.9 kg and final perigee radius equals to ~ 26500 km. Optimization using considered in this paper 
techniques led to the slightly different results: final spacecraft mass equals to 303.6 kg and final 
perigee radius equals to ~24500 km. The projections of both trajectories onto the equatorial plane 
are presented in the Fig. 18.. 

Analysis of obtained results shows that compared trajectories are slightly differed by placement of 
burning arcs, have differences in the thrust steering, and they have slightly different orbital 
evolution. In addition, optimal trajectory, which is computed based on presented here techniques, 
has one orbit having two burning arcs (in contrary with optimal trajectory from [4], see Fig. 19). 

Most likely, a little differences in the results (less then 0.1% of the propellant consumption) is 
explained by following reason: considered trajectories belong to different extremal solutions, which 



 

are consist of different number of complete revolutions around the Earth. In this connection, the 
open problem of computation the minimum-propellant trajectory, having fixed number of complete 
orbits, is actual. 
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Fig. 19. Optimal trajectory of SMART -1 spacecraft  



 

7.4 - COMPARISON WITH NON-AVERAGED OPTIMAL SOLUTION 

One non-averaged minimum-time solution is presented in the paper [15]. There was considered the  
transfer from the elliptical orbit having semi- latus rectum 11625 km, eccentricity 0.75, and 
inclination 7° into the GEO. The spacecraft has initial mass 1500 kg, thrust 0.2 N, specific impulse 
1994.75 s. There was found in [15] the minimal transfer time equals to 177.7375 days. 

This problem was solved using presented in this paper techniques. The computed transfer time 
equals to 177.360 days. So, the relative difference between non-averaged [15] and averaged 
solution is ~0.2%. The averaged solution (namely, transfer duration and initial values of adjoints) 
was used to simulate spacecraft motion within non-averaged problem. The initial value of variable, 
adjoint to true longitude F, was assumed to be zero. The residuals at the right bound of the 
simulated trajectory was found following: ∆e=0.0011, ∆i=0.0030°, ∆rα=1734 m, ∆rπ=-89826 m. So 
maximal error due to averaging technique take place for perigee radius. This error is ~0.2% too. 

8 - CONCLUSION 

Considered techniques allow to optimize efficiently the multirevolutional transfers between non-
coplanar elliptical orbits. The continuation method is most efficient for a minimum-time problem. 
Solution of this problem is used as initial approximation for a minimum-propellant problem solving 
by a modified newton method. 

The two types of optimal transfers from an inclined initial orbit into the GEO were found. The 
critical inclination was found. This inclination divides parametric space of the optimal control 
problem into the 2 regions. The unique type of optimal transfer (C-solution) exists in the one of 
these region and two types of optimal transfers (C- and E-solution) exist in another region. The 
structure of optimal thrust steering and orbital evolution for minimum-time problem were analyzed. 
The 3 kinds of optimal thrust steering controls were found for E-trajectories. 
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