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ABSTRACT : It is considered optimization of low-thrust trajectories
between noncoplanar elliptical orbits. The optimal control problem is
reduced to the two-point boundary value problem (TPBVP) by means of
maximum principle. The numerica homotopic technique and modified
newton technique are used to solve TPBVP. Differential equations of
optimal motion are numericaly averaged when TPBVP is solved. It was
developed the robust and efficient software and a large number of optimal
trajectories were calculated. New qualitative results were obtained. In
particularity, there were found bifurcation of optimal solutions and
existence of the critical initia inclination. The partial classification of
optimal control structure was carried out.

1- PROBLEM DEFINITION

It is considered optimization of low-thrust transfer between non-coplanar elliptical orbits in the
inverse square low field. Significance of this problem is connected with planned using of electric
propulsion for advanced spacecraft insertion. The advanced missions includes low-thrust insertion
into GEO [1-3, 5-11], satellite systems forming and maintenance, spira untwisting around the Earth
for spacecraft insertion into an escape trgjectory [4, 10, 11-14].

Optimization problem of low-thrust transfer between non-coplanar éliptica orbits reduces to the
two-point boundary value problem (TPBVP) by means of Pontryagin’s maximum principle.
Difficulty of solving the TPBVP is connected, in particular, with problem of initial guess value,
which is caused by complex topology of optimal solution in the parametric space. Optimal solutions
bifurcations lead to the discontinuity of TBVP residual vector’s derivative with respect to initial
value of TBVP parameters during crossing bounds of regions having different solutions (i.e.
hypersurfaces having singular sensitivity matrix). This leads to the failure or instability of numerical
methods.

Characteristic features of electric propulsion transfers are defined mainly by a low thrust-to- gravity
force ratio. Thrust acceleration smallness leads to the long-duration transfers. The typical low-thrust
transfer to GEO includes hundreds orbits. In this case, the differential equations of optimal motion
becomes very sensitive with respect to variations of initial values of co-state variables. This
sensitivity makes still more difficult the TPBVP solving. In this circumstances, insufficient number
of digits in the machine representation of real number becomes one of the practical barrier for the
numerical solving the optimal control problem. Another problem is essentia increase of



requirements to the computational productivity when it increases the number of trajectory
revolutions.

The averaging technique [1-3, 8, 9, 11] is used to decrease differential equations instability and
computational consumption If optimal control structure is pre-fixed, then maximum principle is
applied to the averaged equations for optimization of slow control parameters. However, the best
results are obtained by another approach, when optimality conditions are derived from the
non-averaged equations and then these optimal equations are averaged. Equation of motion are
presented in the Keplerian elements The numerical averaging over the orbit is used and a version of
modified newton or shooting method is used to solve corresponding TPBVP.

We will consider optimal transfers between non-coplanar éliptic orbits for a minimum or fixed
time. The numerical algorithm based on continuation technique [11-13] is described. There are
analyzed features of optimal trgectories, in particularity, tansfer trajectories from the inclined
circular or éliptical orbitsto GEO.

2- EQUATIONSOF MOTION

Let us consider spacecraft motion under the influence of the primary gravity force and electric
propulsion thrust. Magnitudes of the thrust and specific impulse of running electric propulsion
engine are assumed to be constant. There are not applied any constraints to the thrust attitude.
Gravity force is assumed to be obeyed to the inverse square law.

Thrust acceleration projections into orbital orts are following:

a :dEcosJ cosy , a, :stinJ cosy , a, :dEs'ny : (1)
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where &, a;, an — transversal, radial, and binormal projection of thrust acceleration correspondingly,
d - thrust step function (d=1 if engine is running, and d=0 if engine is switched off), P — thrust
magnitude, m — spacecraft mass, J - «pitch» angle (angle between projection of thrust vector onto
the orbital plane and transversal), y - «yaw» angle (angle between thrust vector and orbital plane).

To avoid singularity in the vicinity of zero eccentricity and inclination, there are used equations of
motion in the equinoctial elements [1]:
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Whereh:\/%, e, =ecofW+w), e, =esn(W+w), ixztanl—zcosW, iy:tanlzs'nw, and

F=n+w+W - equinoctia elements p — semi-latus rectum, e — eccentricity, w - argument of
pericentre, i — inclination W - right ascension of ascending node, n - true anomaly,

x=1+e cosF +e,snF, h=i snF-i cosF, j =1+i; +i,, w — exhaust velocity of electric
propulsion
It is necessary to transfer spacecraft having initial mass mg from the initial orbit

h=ho, 8=60, 8=6,0, Ix=ix0, ly=lyo 3
into the final one

h=hy, 8=6u, 8=6k, ixZixk, ly=lyk 4
for atimeT.
It is considered the minimization of performance index

P
J=(¢f—dt® min, (5)
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which corresponds to the minimum-propellant problem. If there are not a constraints on transfer
duration T and if d © 1, performance index (5) corresponds to the minimum-time problem.
However, the more conventional performance index for a minimum-time problem is

T

J=git® min. (59)
0

Within a problem of transfer between orbits for a minimum time, the difference between
performance indices (5) e (5d) is reduced to the different normalization of adjoint vector by means
of transversality conditions.

3- OPTIMAL CONTROL

The maximum principle is used to solve the problem (2-5). The Hamiltonian of optimal control
problem (2-5) is

2
H :-dE(1+ pm)+% P, +d£n(A cosJ cosy + A snJcosy + A sny ) (6)
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where

A =hp, +[(x+1)cosF +e |p,, +[(x+1)snF + eprey,
A :x(s'n F xp, - cosF xpey),
A =h(- e,p.. +e.p.,) +%j*(cosF xp, +sn F xp, ) +xh xp;.,

Ph, Pexs Peys Pixs Piys Pr, Pm —adjoint variables, coupled with the phase coordinates h, e, ey, ix, iy, F,
and m correspondingly.

Optimal controls dt), J(t), y (t) are defined from the Hamiltonian (6) maximization:
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where y, =-
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is used istead of (9), and differential equations for m and p, can be eliminated using explicit
expression for the spacecraft mass:

m=m, - (P/w)x. (11)
Substitution of (7), (8), and (9) or (10) into (6) leads to the expression for the optima Hamiltonian:
H = chl D(A OGS 1+ pm5+>;_ = P[kA+Db]+ H, (12)
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The equations of optimal motions become following:
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where X = (h €., 6,l )Tip:(pwpex’pey’pix’piy)T'

Since the transfer between orbits is considered, the final true longitude F is not fixed, therefore
pe(T)=0. The optimal Hamiltonian does not depend on F after averaging, therefore

d
gtF =- 1111—;' =0. So, p: °0 on the averaged solution The optima Hamiltonian, taking into

account supposed averaging, becomes following:




H =dP[kA+b], (14)

and the equations of motion(13) can be rewritten in the form:
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4 - AVERAGING

Low thrust-to-gravity acceleration ratio alows to use averaging of optimal differential equations.
The averaging alows to increase the integration step size and, therefore, to decrease computational
consumptions. But main reason of averaging usage is its regularizing role: the averaged differential
equations are more stable numerically in comparison with non-averaged ones.

The averaging on time over the spacecraft orbital period is used. It is equivalent to well-known in
celestial mechanics averaging on mean anomaly. The asymptotic basis of the averaging is well-
known too: solution of averaged differential equations is zero-order term of the Fourier series
expansion of non-averaged solution. The intuitive basis of the averaging is confined in the
smallness variation of the slow orbital elements during one revolutiondue to low thrust.

Differential equations are averaged using following expression:

d 1to+T

-%——dWFUmL—dWFD—dF (16)
wherey=(x", p")" for minimum-time problem, y=(x", m, p', pm)" for minimum-propellant problem,
f(y,Ft) — the right parts of nonaveraged differential equations (15) or (15a),

n :%’11/1- e - € /h]3 - mean motion, dt/dF = h®/x?.

5- BOUNDARY VALUE PROBLEM AND TRANSVERSALITY CONDITIONS

State vector X, co-state vector p, and residual vector f at the final time T are computed as result of
integration of equations (15) or (15a) using averaging (16). Residual vector is following:
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for the minimum-time problem.

It is necessary to solve equations (17), (17a) with respect to vector of unknown TPBVP parameters
z Vector z has form:

P 0
z= o (18)
gpm a
for minimum propellant problem
o
zZ= = 18a
& e

for minimumtime problem
Let us consider different kinds of boundary conditions.

5.1 - FINAL SPACECRAFT M ASSIS GIVEN IN THE M INIMUM-PROPELLANT PROBLEM.

It is necessary to find initial mass of spacecraft mo, which becomes 7" parameter of the TPBVP
instead of pm, in the equation (18). The transversality condition p,(0)=0 should be satisfied at the
initial time, and the condition m(T)-m=0 instead of p,(T)=0 should be included in the equation

(17).

5.2 - FREE PERICENTRE RADIUS.

There are given apocenter radius ra, argument of pericentre w, inclination iy, and right ascension
of ascending node W for the final orbit. In the equinoctial elements these conditions have form:

& nh? - rak(l- Je§+ey2) 0

g(exix +eyiy)sinwk - (eyiX - exiy)coswki

9(T) =0. (19)
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Transversality conditions are expressed from the equations:

_ g, u
Pn (T) - nlﬁ’ :
_ g, 119, +
T)=n,—=2+n,—=]
P (T) Te. e, |
_ g, 119,
Py (T) =N, Te, +n, e, }', (20)
P (T)=n, %"'ns’ :
I
p, (M) =n, & +n, |
[ b

y

after exclusion from this system the undetermined multipliers n. As it follows from (20), the fina
magnitudes of pix and piy are an constraint-free, so it is sufficient to consider the 3 first equations of
system (20). Let us exclude n, from the 2" and 39 equations. Then let us substitute the expression
for ry, which is getting from the 1% equation, into the derived equation. Finaly, we will get
following transversality condition:

[202- eJep.. - p,he,Ji, snwy, - i, cosw)- )

1
- [2(1- elen,, - phhey](iX snw, +i, cosw, )= 0, (21)
where e= Jef + e§ - eccentricity. Equation (21), equations (19), and corresponding condition for
pm(T) or m(T) are enclose the system of boundary conditions at the final time.

5.3 - FREE APOCENTER RADIUS.
Case of free apocenter radius is similar to case of free pericentre radius, but the 1 equation in the

(19) should be replaced by
g,(T)=nhe - 1 [+ [ +e? =0, 22)

where rgc — given final pericentre radius. The corresponding transversality condition becomes
following:

[2(1+ €)ep,, - p,he,[li, snwy, - i, cosw, )-

- [2a+€)en,, - p,he, (i, snw, +i, cosw, )= 0. (23)

5.4 - FREE LINESOF APSIDESAND NODES.

If lines of apsides and nodes of fina orbit are free, then following conditions should be satisfied at
the final time:
e
¢ h- h,
_Q 2 2 2

g(T) =¢ g te - =+=0. (24)
éif +i2 - tan? s
29

Additional transversality condition are following:



pexey - pey X :O’l.;]

Pidy - Pyly = O.i; (29)
5.5 - FREE L INE OF NODES.
Free final line of nodes corresponds to the following conditions at the final time:
& h- h, 0
g e te - e :
g(T) = g(exiX + eyiy)s'n W, - (eyiX - exiy)coswki: 0. (26)
R
In addition, the transversality conditions should be satisfied
(Puiy = Pyi * Po®, - Py, Joos(w- W) =00 -
Pudy = Pyl + Po€ - Py, =0.
5.6 - FREE L INE OF APSIDES.
If initial argument of pericentre is free, then final boundary conditions are following:
@ h-h 0o
2 a2 Q2.
om=¢", 1 *i=0 28)
g -1 5
and transversality condition is following:
Pe&y - Pe,& =0. (29)

5.7 - ITISFIXED ONLY APOCENTER OR PERICENTRE RADIUS.
In this case boundary condition at the final time is following:

o(T) =2 - r, 1 [ +e? =0, (30)

where ry — the fixed apocenter radius or pericentre radius of final orbit, sign «-» corresponds to

fixed apocenter radius, and sign «+» corresponds to the fixed pericentre radius. Expression (30)
leads to the following transversality conditions:

2nehp,, Fr.e,p, =00

2nehp,, ¥r.ep, = O,{,

pix = O’ ?/

piy = O b

(31)

5.8 - FREE PERICENTRE OR APOCENTER RADIUSAND FREE L INE OF APSIDES.
The boundary conditions at the final time are following:



==0, (32)

wherery and signs are the same as in the previous considered case. In addition to (32), the following
transversality condition should be satisfied at the final time:

P - Py€ =0. (33

5.9 - FIXED SEMI-LATUSRECTUM.
In this case boundary condition at the final time is following:
g(T) = nh* —py (34)

where px — fixed find semi-latus rectum. Expression (34) should be completed by trivia
transversality conditions:

p..(T)=0.0
I
p,,(T) =0,

35
p.(r)=0.) )
p,(T)=0],

5.10 - FIXED SEMIMAJOR AXIS.
In this case boundary condition at the final time is following:
rmZ
T)=——+—-a, 36
g( ) 1_ ef' e)z/ k ( )

where ax — fixed final semimgor axis. Expression (36) should be completed by following
transversality conditionsatt = T:
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6 - TECHNIQUES OF THE BOUNDARY VALUE PROBLEM SOLVING

The boundary value problem solving is reduced to the solving of nonlinear system, which is
consisted of a state residuals and a transversality conditions. The continuations technique or
versions of modified newton methods were used to solve this system The continuation method
belongs to the class of homotopic methods. One of the most smple version of continuation method
was used in this study. The original problem isimmersed into some one-parametric family and then
it is used the linear continuation of the problem solution with respect to the family parameter.



The essence of considered continuation technique is following. Let it iS necessary to solve the
nonlinear system

f(2)=0. (34)

Let f(zo0)=b at some initial approximation z,. Let us consider following one-parametric nonlinear
system

f1(zt)=f(2)-(1-t)b=0. (35)
Whent =0, =7
f1(20,t)=0, (36)

and whent=1 f;(zt )=f(2). Let us represent the solution of problem (35) as function of continuation

parameter t: z=z(t). By virtue of (35), (36), z(t) can be represented as solution of the following
system of ordinary differential equations:

U, 37)

having following initial condition:
20)=2. (39)

After integrating the system (37), (38) ont fromO to 1, we get solution of the original problem
(34). Thus, the solving of nonlinear system (34) is reduced formally to the initial value problem
(37), (38). The system (37) we will name the differential equations system of continuation method.

If Euler method is used for problem (37), (38) integration, then the continuation method converts to
the classical newton method. The advantage of continuation method in comparison with newton
method appears if more advanced numerical integrators are used. If an idea integration method is
used, then the convergence domain of the continuation method in the parametric space z is
coincided with the attraction area of given solution in this space. Equations (37) have singularity on
the hypersurface where matrix ff/fz is singular, therefore continuation method (as newton methods)
Is failed during crossing these hypersurfaces. Singularity of ff/fz generally take place on the
bounds of the attraction region of solution. The singularity is connected with a solution bifurcation
of the original system(34).

Right parts of equations (15) or (15a) are numerically averaged using expression (16) during
integration corresponding system. The ssmple numerical techniques were used to get the integrals of
functions. There are method of trapezoids or Simpson’s method on the fixed uniform grid on F
consisting of 30-300 nodes. The explicit Runge-K utta method of 7" (8") order was used to integrate
the averaging system (15). Theinitial conditions of basic problem were following:

h=hy,e =€,,6, =€,,i, Tigl, Tigm=my, il
Ph = Pror Pex = Pexor Pey = Peyor Pix = Pixos Py = Piyor P = pmoi/)

a the t = 0. For minimum-time problem the spacecraft mass is parameter, so conditions for mass
and for adjoint to mass variables should be excluded from (39).

(39)

The continuation technique demonstrated its highly effectiveness for solving minimum-time
problems. In most problems, the convergence to the optimal solution was achieved by choice the
following initial approximation for TPBV P parameters vector:



where T — dimensionless time referred to the initial orbit. When parameters of the initial or final
orbit were varied, the TPBVP parameters vector of previous problem was used as initia
approximation

Unfortunately, the continuation technigue was found insufficiently efficient for the minimum
propellant problem. The modified newton method was used n this case, and TPBVP parameters
vector of corresponding minimum-time problem was used as initial approximation

7- NUMERICAL RESULTS.

7.1 - TRANSFER BETWEEN CIRCULAR NON-COPLANAR ORBITS.

At first, let us consider the most simple problem — the minimum-time transfer between circular non
coplanar orbits. Within all model problems we will use the same spacecraft parameters:

- initial mass of spacecraft is 1320 kg;
- electric propulsion thrust is 0.332 N;
- electric propulsion specific impulse is 1500 s.

Tragjectory perturbations due to Earth oblateness, Moon, Sun, and planets gravity forces, impact of
eclipsesand solar array degradation are not took into account.

The series computations of optimal transfers from the
circular orbits, having different altitude and inclination,
into the GEO was carried out using developed
techniques and software. Anaysis of obtained
numerical data leads to the interesting new result: the
bifurcation of an optimal solution and the critical initial
inclination are exist. If inclination is less critica one
(icr » 47.3°) then exists unique solution of the
minimum-time problem. The thrust vector is aways
o Tl orthogonal to the spacecraft radius-vector on this
50 /- N\ solution, and eccentricity is identically equals to zero.
- Y Thrust steering is restricted by controlling of angle y
N between thrust vector and orbital plane in this case. An
00 =T \ == example of dependency of angle y with respect to time
o e0 120 180 240 300 360 andargument of latitude is presented in the Fig. 1.
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Fig. 1. Dependency of angley vs. time and Maximal absolute magnitude of angle y on the orbit
argument of latitude for transfer from circular ~ Ymax 1S reached in the noda points. Angle Yimax
orbit h = 45000 km, i = 30° into the GEO increases when time increases and it reaches maximal

[
o]
o

magnitude 90° when the semimajor axis reaches its
maximal magnitude. Then Yy max decreases.

i
N
o

(<)
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The typical situation on these solution is acceleration

0 20 0 60 80 100 during initial transfer phase (phase of increasing Y max)

b deve and braking during final transfer phase (phase of

Fig. 2. Dependency of angleJ vs. time for decreasing Ymax). The typical dependency of angle J

transfer from circular orbit h = 45000 km, i (angle between projection of the thrust vector onto the

= 30° into the GEO orbital plane and transversal) is presented in the Fig. 2.

If initial inclination is sufficiently small then transfer can consist of unique acceleration or braking
phase.

Thetta, degrees

o




Fig. 3. Projections of minimum-time
trajectory from circular orbit h =15000 km,

i = 75° into the GEO (C-solution)

Fig. 4. Projections of minimum-time

trajectory from circular orbit h =15000 km,
i =75° into the GEO (E-solution)

Let us denote the considered solution, which is
characterized by zero eccentricity and equality J = 0° or
J = 180° for averaged problem, as C-solution.
Projections of typical Gtrgectory are presented in the
Fg. 3.

It was found another optimal solution (E-solution) when
initial inclination is greater than critical one. The thrust
vector position is not constrained by a loca horizon
plane on the averaged E-solution, therefore the
eccentricity is nonzero on the trajectory. The projections
of typical E-trgectory are presented in the Fig. 4. The
dependencies of angles J and y versus time and
argument of latitudes u on this trgjectory are presented in
the Fig. 5.

Typica phases of E-trgectory are following:

1. The acceleration-braking phase (acceleration
in the pericentre vicinity and braking in the
apocenter vicinity);

2. The pure acceleration phase;

3. The braking-acceleration phase (braking in
the pericentre vicinity and acceleration in the
apocenter vicinity).

Fig. 6 presents dependency of the maximal eccentricity,
which is reached during the transfer, with respect to
initial inclination. The initial atitude is 15000 km. E- and

C-solutions are merged at the critical initial inclination 47.3°, and maximal eccentricity on the
E-trgjectory increases when initial inclination increases.
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Fig. 5. Dependency of anglesJ andy vs. time and argument of latitude for minimum-time transfer from
circular orbit h = 15000 km, i = 75° into the GEO (E-solution)



The dependency of the ratio of maximal geocentric distance to the initial radius versus initial
inclination is presented in the Fig. 7. In case of large initia inclination, the decreasing of pericentre
radius on the initial phase of E-trgjectory can take place.
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Fig. 8. Transfer duration vs. altitude and inclination

of initial orbit (minimumtime problem)

initial inclination on the E-solution

The required increment of characteristic
velocity on the Etrgectory is less than one
on the C-trgectory. For minimum-time
problem it corresponds to smaller transfer
duration. Dependency of transfer duration
versus initia inclination for C- and E-
trgjectoriesis presented in the Fig. 8.

Thus, if initial inclination is less than critica
one, then C-trgectory is globally optimal,
otherwise E-trgectory is globally optimal.
Fig.9 presents dependency of required
characteristic velocity consumption with
respect to initia inclination and initial
altitude for globally optimal solution

Advantage of globally optimal control in comparison with rely optimal control is presented in the
Fig. 10. The improvement does not exceed 4% if initial inclination is less than critical, and it can be
greater than 15% otherwise
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Fig. 10. Advantage of globally-optimal solutionin

comparison with optimal rely solution

Usage of minimum-propellant control allows essentially to increase final mass of spacecraft at the
expense of increased transfer duration. Fig. 11 presents dependency of characteristic velocity,
which is required for transfer from initia circular orbit having inclination 90° into GEO, versus
transfer duration. The dashed line corresponds to the minimum-time problem for varied initia



altitudes. Thick line corresponds to the minimum-propellant problem for initia altitude 30000 km,
and thin line corresponds to the minimum-propellant problem for initial altitude 15000 km.

Maximal geocentric distance during transfer could be essentially greater than GEO radius in case of
large initial inclination. The maxima geocentric radius monotonically decreases on the
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radius for transfer from initial circular orbit
i=90°, h=15000 km into GEO
C-trgjectories when the transfer duration increases. On the contrary, in case of Etrgectory, the
maximal geocentric radius has a minimum at the transfer duration close to minimal one (Fig. 12).

7.2 - 3D TRANSFER FROM AN ELLIPTICAL ORBIT INTO GEO.

C- and E-transfers between circular nonrcoplanar orbits generates corresponding solutions for
transfer between nortcoplanar eliptical and circular orbits. In this case, of coarse, the eccentricity
and angle J are nonzero on the averaged C-solution. Qualitative difference of C-solution from E
solution consists in the eccentricity behavior. The maximal eccentricity at the Gtraectory never
exceeds initial eccentricity, and, as contrary, the maximal eccentricity on the Etrajectory typically
greater then initial eccentricity. If initial inclination is large enough, the apocenter and pericentre
can trade its places on the C-trgjectory (i.e. argument of pericentre can change from 0° to 180° or
vice versa). An examples of C- and E-trgjectories are presented in the Fig. 13.
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Fig. 13. Optimal transfer from theinitial elliptical orbit h,=60000 km, h,=30000 km, i=90° into the GEO.
Upper row — E-trajectories, lower row — C-trajectories.
Left column— minimumtime problem, the rest columns— minimum-propellant problem.



Fig. 14 presents evolution of main orbital parameters on the minimum-time trgectory (initial
pericentre altitude 30000 km, initial apocentre atitude 60000 km, initial inclination90°).
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Fig. 14. Orbital evolution during the minimumtime transfer from the initial orbit
i=90°, h,=30000 km, h,=60000 km into the GEO
The minimum-time problem was studied the most detailed. In particularity, there was carried out
the series of computation of optimal tragjectories for initial orbits having parameters given in the
3D-grid of pericentre altitudes, apocenter altitudes, and inclinations. Fig. 15 presents some results
of these computations.
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Fig. 15. Transfer duration vs. perigee atitude, apogee altitude and inclination of initial orbit

At first, it was found that initia inclination for transfer from the eliptical orbit into the GEO
remains invariable - about 47.3°. As before, the E-solution is preferable inside its region of
existence. Therefore, the presented results correspond to C-solution if initia inclination is less than
critical one, and it corresponds to Esolution otherwise. Fig. 15 presents curves corresponding to
optimal transfers from the initia orbit having fixed inclination, fixed apocenter altitude, and varied
pericentre atitude. If initial inclination is less than critical one and initial apocenter altitude less
than GEO adltitude, then transfer durations decreases when pericentre altitude increases. If initial
inclination is less than critical one but initial apocenter altitude is greater than GEO altitude, then an



initial pericentre atitude exists, which corresponds to the minimal transfer duration (and minimal
required increment of characteristic velocity). Let us call initia orbit, having such pericentre
adltitude, as the p-optimal orbit. The dashed line in the Fig. 15 corresponds to transfer from the p-
optimal orbit having zero inclination into the GEO. When initia inclination increases, the optimal
initial pericentre altitude decreases. When initial inclination becomes greater than critical one, it
take place the qualitative reconstruction of dependency of transfer duration versus parameters of
initial orbit. In this case, when initial apocenter atitude less than ~15000 km and initial pericentre
atitude increases, the transfer duration decreases. If initial apocenter altitude greater than ~15000
km and initial pericentre altitude increases, the transfer duration monotonically increases.
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divides parametric plane (initial apocenter altitude — initial inclination) into the regions having
different structure of optimal control and different type of orbital evolution. There were found 3
kinds of the optimal transfers.
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corresponds to the acceleration during complete orbit. Maximal angley (at the apocenter) decreases
monotonically, and absolute magnitude of the minimal angle y (at the pericentre) increases and
reaches 90° at the end of this phase. The third phase corresponds to the acceleration at the apocenter
vicinity and to the braking at the pericentre vicinity. As result, apocenter altitude decreases and
pericentre atitude increases. Absolute magnitudes of extremal angles y (at the apocenter and
pericentre) decrease, the absolute magnitude of apogean angle y becomes greater than one at the
pericentre as early as at the beginning of 39 phase. The maximal eccentricity take place at the
bound of & and 2" phases during the optimal transfer of the  kind. The maximal apocenter
altitude take place at the bound of 2" and 39 phases. The semimajor axis has maximum during the
transfer too. Averaged inclination monotonically decreases for all kinds of optimal transfers, of
course.

The 1st phase duration decreases when initial inclination decreases. This phase vanishes at the some
initial inclination. Then it decreases the duration of the 2% phase. The 2" phase vanishes when
initial orbit becomes the a-optimal orbit.

Optimal transfer of the 2" kind take place when initial orbit is a-optimal orhit (dashed line in the
Fig. 16). Corresponding trgjectory consists of unique phase having stable structure of thrust
steering. It take place braking at the pericentre vicinity to decrease apocenter altitude and the
acceleration take place at the apocenter vicinity to increase pericentre altitude. The peak magnitudes
of angle y take place at the apocenter and pericentre. Apogean angle y decreases monotonically
from 90°. Absolute magnitude of angle y at the pericentre decreases monotonically too. Averaged
inclination, semimajor axis, apocenter radius, and pericentre radius vary monotonically.

The optimal transfer of 3 kind take place when initial apogee altitude greater than optimal one (the
region on the right of dashed line in the Fig. 16). Optimal trgectory consists of 2 phases. The
braking take place during complete orbit at the 1 phase. The thrust steering at the 2" phase is
analogously to the thrust steering at the optimal transfer of 2" kind. Maximal absolute peak
magnitudes of angle y take place at the bound of phases, the maximal apogean angle y reaches 90°.
Averaged pericentre radius has minimum and averaged eccentricity has maximum at the bound of
phases. Apocenter radius, semimajor axis, and inclination are decreases monotonically.

7.3- SMART-1TRAJECTORY OPTIMIZATION —COMPARISONWITH ESOC RESULTS

The trgjectory optimization of SMART-1 spacecraft is considered. The initial orbit has following
parameters. perigee radius 20000 km, apogee radius 58068 km, inclination 6.655°, right ascension
of ascending node 244.21°, and argument of perigee 200.23°. The parameters of the fina orbit are
following: apogee radius 219400 km, inclination 5.49°, right ascension of ascending node 0.25°,
argument of perigee 79.66°. The final perigee radius is free. Initial spacecraft mass equals to
325.966 kg, transfer duration is fixed and equals to 284 days [4]. The electric propulsion provides
thrust 45.82 mN and exhaust velocity 14674 nvs.

The results of carried out in the [4] optimization are following: final spacecraft mass equals to
303.9 kg and final perigee radius equals to ~ 26500 km. Optimization using considered in this paper
techniques led to the dlightly different results: final spacecraft mass equals to 303.6 kg and final
perigee radius equals to ~24500 km. The projections of both trajectories onto the equatorial plane
are presented in the Fig. 18..

Analysis of obtained results shows that compared tragjectories are dightly differed by placement of
burning arcs, have differences in the thrust steering, and they have dightly different orbital
evolution. In addition, optimal trajectory, which is computed based on presented here techniques,
has one orbit having two burning arcs (in contrary with optimal tragjectory from [4], see Fig. 19).

Most likely, a little differences in the results (less then 0.1% of the propellant consumption) is
explained by following reason: considered trajectories belong to different extremal solutions, which



are consist of different number of complete revolutions around the Earth. In this connection, the
open problem of computation the minimum-propellant trgjectory, having fixed number of complete
orbits, is actual.
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7.4 - COMPARISON WITH NON-AVERAGED OPTIMAL SOLUTION

One non-averaged minimum-time solution is presented in the paper [15]. There was considered the
transfer from the eliptica orbit having semi-latus rectum 11625 km, eccentricity 0.75, and
inclination 7° into the GEO. The spacecraft has initial mass 1500 kg, thrust 0.2 N, specific impulse
1994.75 s. There was found in [15] the minimal transfer time equalsto 177.7375 days.

This problem was solved using presented in this paper techniques. The computed transfer time
equals to 177.360 days. So, the relative difference between nonaveraged [15] and averaged
solution is ~0.2%. The averaged solution (namely, transfer duration and initial values of adjoints)
was used to simulate spacecraft motion within nonraveraged problem. The initial value of variable,
adjoint to true longitude F, was assumed to be zero. The residuals at the right bound of the
smulated trajectory was found following: De=0.0011, Di=0.0030°, Dr,=1734 m, Dr,=-89826 m. So
maximal error due to averaging technique take place for perigee radius. This error is ~0.2% too.

8- CONCLUSION

Considered techniques allow to optimize efficiently the multirevolutional transfers between non
coplanar éliptical orbits. The continuation method is most efficient for a minimum-time problem.
Solution of this problem is used as initial approximation for a minimum propellant problem solving
by a modified newton method.

The two types of optimal transfers from an inclined initial orbit into the GEO were found. The
critical inclination was found. This inclination divides parametric space of the optimal control
problem into the 2 regiors. The unique type of optimal transfer (C-solution) exists in the one of
these region and two types of optimal transfers (C- and Esolution) exist in another region. The
structure of optimal thrust steering and orbital evolution for minimumtime problem were analyzed.
The 3 kinds of optimal thrust steering controls were found for E-trgjectories.
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